DBE DPBUTII Service

Model ID：RB23WABAS

Service Manual

Table of Contents
Important Safety Notice－－－ 01
01．Product Specification－－－ 02

03．Exploded Diagram－－12
04．Assembly and Disassembly Procedures－－14

Appendixl：User＇s Manual
Appendix II User＇s QSG
Appendix III ：Spare Parts List
Appendix IV：Software Pack

Safety Notice
Any person attempting to service this chassis must familarize with the chassis and be aware of the necessary safety precautions to be used when serving electronic equipment containing high voltage．

Published by Wistron Corporation Printed in Taiwan © All rights reserved Subject to modification 26th－Nov．－2008

Product Announcement:
This product is certificated to meet RoHS Directive and Lead-Free produced definition. Using approved critical components only is recommended when the situation to replace defective parts. Vender assumes no liability express or implied, arising out of any unauthorized modification of design or replacing non-RoHS parts. Service providers assume all liability.

Qualified Repairability:
Proper service and repair is important to the safe, reliable operation of all series products. The service providers recommended by vender should being aware of notices listed in this service manual in order to minimize the risk of personal injury when perform service procedures. Furthermore, the possible existed improper repairing method may damage equipment or products. It is recommended that service engineers should have repairing knowledge, experience, as well as appropriate product training per new model before performing the service procedures.

NOTICE:

: To avoid electrical shocks, the products should be connect to an authorized power cord, and turn off the master power switch each time before removing the AC power cord.
: To prevent the product away from water or exploded in extremely high humility environment.
: To ensure the continued reliability of this product, use only original manufacturer's specified parts.
: To ensure following safety repairing behavior, put the replaced part on the components side of PWBA, not solder side.
: To ensure using a proper screwdriver, follow the torque and force listed in assembly and disassembly procedures to screw and unscrew screws.

: Using Lead-Free solder to well mounted the parts.

! The fusion point of Lead-Free solder requested in the degree of $220^{\circ} \mathrm{C}$.

This model combine with three platform. See below explanation
1.Scaler IC:RTD2482D used in VGA ,DVI and HDMI port Using simply word to define it(1A1D1H)
2. Scaler IC:RTD2482 used in VGA and HDMI port. Using simply word to define it(1A1D)
3.Scaler IC:RTD2482RD used in VGA ,DVI and HDMI port Using simply word to define it.(1A1D1H+OD)
The product specification demonstrate all of the model: 1.1 SCOPE

This document defines the design and performance requirements for a 23 W inch diagonal , flat panel monitor . The display element shall be a 1920×1080 resolution TFT-LCD (Thin Film Transistor Liquid Crystal Display).16.7M color(Hi-FRC) images are displayed on the panel. Video input signals are analog RGB (0.7 Vp p). When the system is powered-on , previously stored screen parameters for a pre-defined mode will be recalled if the operating mode is one of stored in memory(2213 factory timing mode). This monitor operates normal by non-interlaced mode.
DDC (Display Data Channel) function is DDC2Bi compliance. Power saving function complies with the DPMS(Display Power Management Signaling) standard.
1.2 GENERAL REQUIREMENTS

1.2.1Test Condition

Brightness level \& contrast level max. Full white pattern test mode following spec. Warm up more than 1 hr , ambient light < 10 Lux, Luminance meter CA210 or BM7 or same equipment
1.2.2Test Equipment

The reference signal source is a calibrated Chroma 2237 video generator or higher. The use of other signal generators during qualification and production is acceptable provided the product complies with this specification.

1.3 ELECTRICAL

This section describes the electrical requirement of the monitor.

The LCD monitor consists of an interface board, a power board and inverter board, a function key board
The interface board will house the flat panel control logic, brightness control logic, audio function control (option), key function control, DDC and DC to DC conversion to supply the appropriate power to the whole board and LCD flat panel, and transmitting LVDS signals into LCD flat panel module to drive the LCD display circuit.
The power board will support main power DC5V to interface board, and drive the two CCFLs (Cold Cathode Fluorescent Tube).
The interface board provides the power ON / OFF control over the power board.
Whole monitor to control the DPMS LED indicator to function key board.

MONITOR SPECIFICATIONS

ITEM		SPEC
Signal Input (Analog)	Frequency	Analog: $\mathrm{H}: 31 \mathrm{kHz} \sim 94 \mathrm{kHz}$ V:50Hz~75Hz
	Pixel clock	205MHz (Max)
	Video Input	Analog 0.7 V p-p
	Display Pixels	640×480 (VGA) ~ 1920×1080
	Sync Signal	Separate SYNC for TTL (N or P)
Signal Input (Digital)	Frequency	Digital: $\mathrm{H}: 31 \mathrm{kHz} \sim 94 \mathrm{kHz}$ $\mathrm{V}: 50 \mathrm{~Hz} \sim 75 \mathrm{~Hz}$
	Pixel clock	165MHz (Max)
	Video Input	Analog $0.7 \mathrm{Vp}-\mathrm{p}$ Input Impedance 75Ω
	Display Pixels	640×480 (VGA) ~ 1920×1080
Connector	AC Input	AC100V $\sim \mathrm{AC} 240 \mathrm{~V} \quad 10 \% 50 / 60 \mathrm{~Hz}, 3$ pin AC power cord
	Input connector	D-SUB 15 pin, DVI-D \& HDMI
	Audio Jack (OPTIONAL)	Audio input 3.6Ф
Power Comsumption	AC in $100 \mathrm{~V} \sim 240 \mathrm{~V}$	Active 50 W (non-USB)/60W(w/USB), power saving $<2 \mathrm{~W}$
User's Control	Front	Input ,E-KEY, Auto Adjust ,Menu Adjust(-), Adjust(+),Power
	OSD	Contrast, Brightness, Position, Clock, Phase, Analog/Digital, Reset, Color, Language select, etc.
Pre-Defined Timing	Factory	13
	User	9
Plug and Play		VESA DDC2Bi
Power Saving		VESA DPMS
Input Signal Counter Tolerance		$\leqq \mathrm{H} \quad 1 \mathrm{kHz}, \leqq \mathrm{V} \quad 1 \mathrm{~Hz}$

1.3.1 Interface Connectors

1.3.1.1 Power Connector and Cables

The AC input shall have an IEC/CEE-22 type male power receptacle for connection to mains power. The power cord shall be with length of 1.80 .005 meters.
1.3.1.2 Video Signal Connectors and Cable

The signal cable shall be $1.8 \quad 0.005$ meters long. At the end of the cable shall be a molded-over, shielded, triple row, 15 position, D-subminiature connector. The CPU connection shall have captive screw locks, which will be adequate for hand tightening. The monitor connection may use small screws.

Connector Pin Description		
D-SUBPin Description		
Pin	Name	Description
1	Red-Video	Red video signal input.
2	Green-Video	Green video signal input.
3	B lue-V ideo	B lue video signal input.
4	GND	G round
5	DDC-GND	DDC ground for the VESA DDC 2Bi function.
6	Red-GND	A nalog signal ground for the Red video.
7	Green-GND	A nalog signal ground for the Green video.
8	B lue-GN D	A nalog signal ground for the Blue video.
9	$+5 \mathrm{~V}$	+5 V input from host system for the VESA DDC2 Bi function.
10	Sync-GND	S ignal ground
11	GND	G round
12	DDC_SDA	S DA signal input for the VESA D DC B2i function.
13	H-SYN C	Horizontal signal input from the host system.
14	V-SYNC	Vertical signal input from the host system.
15	DDC-SCL	SCL signal input for the VESA DDC 2Bi function.

HDMI Type A Connector Pin Assignment
PIN Signal Assignment 1 TMDS Data2+ 3 TMDS Data2- 5 TMDS Data1 Shield 7 TMDS Datao- 9 TMDS Datao- 11 TMDS Clock Shield 13 CEC 15 SCL 17 DDC/CEC Ground 19 Hot Plug Detect

FIN	Signal Assignment
2	TMDS Data2 Shield
4	TMDS Data1 +
6	TMDS Data -
8	TMDS Datao Shield
10	TMDS Clock+
12	TMDS Clock-
14	Reserved (N.C. on device)
16	SDA
18	$+5 V$ Power

1.3.1.3 Audio Jack (option) This jack shall connect the audio input from host computer.
1.3.2 Video Input Signals

NO.	Symbor	Item	Min	Norma	Max	Unit	Remark
1	Fh	Scanning Horizonal Frequency	31		94	kHz	Minimum Range
2	FV	Scanning Vertical Frequency	50		75	Hz	Minimum Range
3	Vih	Hi Level Input	2		5		Note 1)
4	Vil	Low Level Input	0		0.8	V	Note 1)
5	Video	RGB Analog Video Level	0.0	0.7	1.0	V	75 ? to Ground

Note 1) SchmittTriggers Input, Supported 3.3V device H (\& V) sync output from PC

1.3.2.1 Video Signal Amplitudes

The three video inputs consist of Red, Green , and Blue signals, each with its own coaxial cable terminated at the monitor. These video signals are analog levels, where 0 V corresponds to black, and 700 mV is the maximum signal amplitude for the respective color, when each signal is terminated by a nominal 75.0 ohms .For a given monitor luminance levels are measured using this defined video amplitude driving a monitor meeting the termination requirements . The signal amplitude is not to be readjusted to compensate for variations in termination impendence.

1.3.2.2 Video Signal Termination Impedance

This analog video signal termination shall be 75Ω 1% which shall be resistive with a negligible reactive component.

1.3.2.3 Synchronization (Sync) Signals

The Horizontal Sync (HS) TTL signal is used to initiate the display of a horizontal line. HS may be either active high or active low, depending upon the timing .The Vertical Sync (VS) TTL signal is used to initiate the display of a new frame. VS may be either active high or active low, depending on the timing .

1.3.2.4 Sync Signal Levels

The monitor must accept sync signals from both 3.3 and 5 volt TTL logic families. The inputs shall sense a logic 0 when the input is 0.8 volt or less and shall sense a logic 1 when the input is 2.0 volts or greater. In addition to these level requirements, there shall also be a minimum of 0.3 volt hysteresis provided for noise immunity (typically by using a Schmitt Trigger input). That is , the input level at which the monitor actually detects a logic 0 shall be at least 0.3 volt lower than the level at which it actually detects a logic 1 .If the monitor sync processing circuits are designed around the 3.3 volt logic family ,then the sync inputs must be 5 volt tolerant.

1.3.2.5 Sync Signal Loading

TTL input loading shall be equivalent to one TTL input load. When logic 0 is asserted by a sync input, the maximum current source from any single monitor sync input to the driver is 1.6 mA . When logic 1 is asserted, the maximum current source from the driver to any single monitor sync input is 400 uA .

1.3.2.6 Abnormal Signal Immunity

The monitor shall not be damaged by improper sync timing, pulse duration, or absence of sync, or abnormal input signal amplitude (video and/ or sync too large or too small), or any other anomalous behavior of a graphics card video generator when changing modes , or when any combination of input signals is removed or replaced. Additionally, under these conditions, the monitor shall not cause damage to the driving source .

1．3．3 User Controls and Indicators

1．3．3．1 Power On／Off Switch
The monitor shall have a power control switch visible and accessible on the front of the monitor The switch shall be marked with icons per IEC 417 ，\＃ 5007 and \＃5009．The switch shall interrupt the DC supply to the monitor．

1．3．3．2 Power Indicator LED

The monitor shall make use of an LED type indicator located on the front of the monitor ． The LED color shall indicate the power states as given in Table 1.
Table 1

Function	LED Calar
Full Power	White color
Sleep	Amber color

1．3．3．3 On－Screen Display

The Wistron On Screen Display system shall be used，controlled by a Menu button．If the buttons remain untouched for OSD turn off time while displaying a menu，the firmware shall save the current adjustments and exit．Also，if the video controller changes video mode while the OSD is active，the current settings shall be save immediately，the OSD turn off，and new video mode is displayed．

Key	When No OSD display	OSD Display
MENU	Menu Display	1．To select the OSD sub－Menu 2．Enter select
$>$	Speaker Volume／Plus （with Audio）	1．Right or Down selection of the OSD menu 2．Increase the value after bar selected
$<$	Speaker Volume／Minus （with Audio）	1．Left or up selection of the OSD menu 2．Decrease the value after bar selected
Auto	Auto Adjust Function	Menu exit
e	Trigger eColor Management	Trigger eColor Management
Input	Input source select	Input source select

ITEM	Content
Volume	To increase or decrease the sound level
Brightness	Adjust backlight luminance of the LCD panel
Contrast	Adjust gain of R，G，B signal
Clock	Adjust the ratio of dividing frequency of the dot clock
Focus	Adjust the phase of the dot clock
H．Position	The active screen is horizontally move right and left
V．Position	The active screen is vertically move up and down
Color temp	Select three kinds of modes（Warm，Cool，User）
OSD Language	1. USA－select the language among English，French，Italian，Deutsch，Spanish，繁體中文， 簡體中文，日本語 2．EMEA－select the language among English，French，Italian，Deutsch，Spanish，Russian， Dutch，Finnish
OSD Position	Adjust the OSD menu position
OSD Timeout	The OSD menu show time
Setting	The setting of Input Source，Wide Mode，DDC／CI
Information	It will show resolution，the frequency of horizontal／vertical synchronizing and S／N
Reset	All data copy from shipment factory data

1．3．4 Monitor Modes and Timing Capability

1．3．4．1 Format and Timing
The monitor shall synchronize with any vertical frequency from 50 to 75 Hz ，and with any horizontal frequency from 31 to 94 KHz ．If the input frequency is out of the above－specified range， the monitor shall display a warning screen indicating that the input frequency is out of range． Under no circumstances shall any combination of input signals cause any damage to the monitor ．

1．3．4．2 Factory Assigned Display Modes

There are 13 factory pre－set frequency video modes．These modes have a factory pre－set for all characteristics affecting front－of－screen performance．When the system is powered on，previously stored screen parameters for a pre－defined mode will be recalled if the operating mode is one of those stored in memory．If the operating mode is not one of those stored in memory，the monitor CPU will select the PRESET timing for a mode that is the next lowest in horizontal scanning frequency to the mode being currently used． The screen parameters may be adjusted by the use of the front bezel controls and then may be saved as a user defined mode．The monitor shall include all the preset video timings shown in the following page．（ Please see Note．（3））
1．3．4．3 Mode Recognition Pull－in
The monitor shall recognize preset modes within a range of 1 KHz whichever is less for horizontal ；and within 1 Hz for vertical．
1．3．4．4 User Display Modes
In addition to the factory pre－set video modes， provisions shall be made to store up to 9 user modes．If the current mode is a user mode，the monitor shall select its previously stored settings．If the user alters a setting，the new setting will be stored in the same user mode．The user modes are not affected by the pre－set command．If the input signal requires a new user mode，storage of the new format is automatically performed during user adjustment of the display（if required）．（ Please see Note．（4））

PRESET PC TIMINGS (ANALOG AND DIGITAL INPUTS)

Mode	Resolution (active dot)	Resolution (total dot)	Horizontal Frequency (KHz)	Vertical Frequency (Hz)	Nominal Pixel Clock (MHz)	Aspect Ratio
	$640 \times 480 @ 60 \mathrm{~Hz}$	800×525	31.469	59.941	25.175	$4: 3$
MAC	$640 \times 480 @ 66.66 \mathrm{~Hz}$	864×525	35	66.66	30.24	$4: 3$
VESA	$720 \times 400 @ 70 \mathrm{~Hz}$	900×449	31.469	70.087	28.322	1.8
SVGA	$800 \times 600 @ 56 \mathrm{~Hz}$	1024×625	35.156	56.250	36.000	$4: 3$
	$800 \times 600 @ 60 \mathrm{~Hz}$	1056×628	37.879	60.317	40.000	$4: 3$
XGA	$1024 \times 768 @ 60 \mathrm{~Hz}$	1344×806	48.363	60.004	65.000	$4: 3$
	$1024 \times 768 @ 70 \mathrm{~Hz}$	1328×806	56.476	70.069	75.000	$4: 3$
VESA	$1152 \times 864 @ 75 \mathrm{~Hz}$	1600×900	67.5	75	108	$4: 3$
SXGA	$1280 \times 1024 @ 60 \mathrm{~Hz}$	1688×1066	63.981	60.020	108.000	$5: 4$
WXGA	$1280 \times 800 @ 60 \mathrm{~Hz}$	1680×831	49.702	59.810	83.500	$16: 10$
WXGA+	$1440 \times 900 @ 60 \mathrm{~Hz}$	1904×931	55.935	59.887	106.500	$16: 10$
HD	$1920 \times 1080 @ 60 \mathrm{~Hz}$	2576×1120	67.158	59.963	173.000	$16: 9$
	$1920 \times 1080 @ 60 \mathrm{~Hz}$	2200×1125	67.500	60.000	148.500	

PRESET VIDEO TIMING(DIGITAL INPUT)

CEA-861 -c-code	H-Active	V-Active	I/P	H-Total	H-Back Porch	V-Total	V-Back Porch	H-Freq. (kHz)	V-Freq. (Hz)	P-Freq. (MHz)
1	640	480	p	800	48	525	33	31.5	60	25.2
2,3	720	480	p	858	60	525	30	31.5	60	27.027
4	1280	720	p	1650	220	750	20	45	60	74.25
5	1920	1080	i	2200	148	1125	15	33.75	60	74.25
16	1920	1080	p	2200	148	1125	36	67.5	60	148.5

Analog input (VGA) treats all timings as PC-timings.

1.3.5 Controller Requirements

1.3.5.1 General Requirements

The monitor shall include a controller capable of converting the analog RGB signal from a standard 1920×1080 resolution video controller in the CPU to a signal which can be displayed on the panel. The controller will include a PLL,A/D converters, LVDS transmitter and other circuitry necessary to perform its function. The PLL shall be stable enough to ensure that a static image from the CPU is placed in the same physical location on the flat panel in each frame.

1.3.5.2 Video Stretching

The monitor shall contain provisions to "stretch" the video signal, so that an input signal from the computer in any resolution smaller than 1920 x 1080 is automatically expanded to fill the entire screen.

1.3.5.3 Panel Timing and Interface

The controller supplied with the monitor shall control all panel timing. This controller shall adequately insulate the monitor from the computer, so that no possible combination of input signals from the computer shall cause damage to the flat panel or any other component of the monitor. The LCD panel interface shall support the TFT standard.
1.3.6 DC - AC Inverter Requirements

The DC-AC inverter is on the power board. The frequencies used by the DC-AC inverter used to power the backlight shall be chosen so as to prevent any noticeable effects on the flat panel (such as a rolling effect).
1.3.7 Power Supply Requirements

The AC to DC converter power supply for the monitor shall be an external AC to DC converter "brick" This brick shall have an IEC receptacle for main power input and a pin - in ---socket for DC power out. The brick shall provide sufficient power for both the monitor and the backlight assembly, and shall meet requirements specified in Table 2.

Table 2
AC to DC Converter Requirements

AC to DC Converter Requirements	
Input Voltage Range	The operating range shall be from 90 to 132 and 195 to 265 AVC sinusoidal for all models specified.
Input Frequency Range	Input power frequency range sha;, be from 47.5 to 63 Hz over the specified input voltage range.
Power Consumption	Power consumption for the monitor shall be less than 55 W over the specified voltage and frequency ranges. In suspend or sleep mode the power consumption will be less than 2 W.
Line Fuse	The AC input shall be fused and become electrically open as a result on an unsafe current level. The fuse many not be user replaceable.
Initial Cold Start	The power supply shall start and function properly when under full load, with worst case conditions of input voltage, input frequenct, operating temperature, and cold backlight lamps.
Inrush Current	The inrush current must be limited to 30 A when operated at 120 VAC, and 50 A when operated at $220 \mathrm{VAC}$. Inrush current is measured at an ambient temperature of $25^{\circ} \mathrm{C}$, with the unit temperature stabilized in the power-off.
Hot Start Cycle	The power supply shall be damaged when switched ON for one second and OFF for one second for seven consecutive after
operating for one hour at full load, $25^{\circ} \mathrm{C}$, and nominal input line	
voltage.	

1.3.8 Display Communications Channel

The monitor assembly shall provide a display communications channel that conforms to VESA DDC2Bi hardware requirements. This configuration shall contain the 128-byte (HDMI 256-byte)EDID file as specified by VESA EDID standard. The monitor should not write to the EDID file for the first two minutes of operation following power-up UNLESS some action taken by the user or the host CPU forces the write (for instance, requesting the serial number via the OSD). Furthermore, it is recommended that CMOS switches be incorporated to isolate the DDC IC from outside connections while the EDID Fault Management is being updated. This is to prevent corruption of the data by attempts to read the data while it is being changed.
1.3.9 Firmware Update Function (same ISP function) The update firmware need through from the D-Sub connector, use DDC I2C bus to do update firmware.

1.4. ELECTRICAL

1.4.1 General Requirements

The panel used as the display device shall be an 1920×1080 resolution 23W, TFT LCD. This panel shall be approved for use in this monitor.
1.4.2. Panel Timings

The controller included with the monitor shall translate all video timings from the CPU that meet the timing requirements listed in Panel specification into timings appropriate for the panel. Under no circumstances may the controller supply the panel with timings that may result in damage. The controller shall insulate the panel from the CPU, so that the panel shall always be driven per it's own specification regardless of the timings being sent from the CPU.
1.4.3.Polarizer Hardness The outer face of the front polarizer panel shall be covered with a coating with a \# 3 hardness value .

1.4.4.Backlight Requirements

1.4.4.1 General Requirements

The backlight assembly shall be designed to support field replacement at the customer site or authorized service center.The lamps shall have a continuous operating life of at least 50,000 hours at $25^{\circ} \mathrm{C}$. The operating life is defined as having ended when the illumination of light has reached 50% of the initial value. The lamps shall extend a sufficient amount from the edge of the light guide that sputtering over the life of the lamps shall not cause degradation of the luminance uniformity (such as non-illuminated bands along the edges of the display).

1.4.4.2 Lamps Startup Time

The backlight lamps shall start about 2 sec of the time the monitor power switch is pressed or the monitor is restarted from a power - down mode . The starting time shall stay about 2 sec . for the minimum expected life of the lamps.
Test conditions are as follows :

1.4.5.Defects

1.4.5.1Visual Inspection

The LCD panel shall be inspected with all pixels set to white, black, red, green, and blue. The color variation, brightness variation, and overall appearance must not be perceived as poor quality .Areas and / or parameters considered questionable shall be subjected to detailed measurements .

1.4.5.2 Display Degradation

Over the life of the product, variation of the parameters specified in Panel specification shall be maintained within reasonable limits. The panel must not exhibit any significant defects while in operation (excluding the CCFL operation).This does not in any way change the warranty given by the panel manufacturer .
1.4.5.3 Light Leakage

Except for the active display area , there shall be no light emission visible from any angle from any other part of the display. For this test, the ambient illumination must follow panel's specification.

1.4.5.4 Allowable Defects

No cosmetic defects are allowed except those specified below. The conditions of visual inspections are as follows:
For 23 series
Viewing distance is to be approximately $35-50 \mathrm{~cm}$
Ambient illumination is to be 300 to 700 lux. Viewing angle shall be at 90 degree. Defects not apparent within one minute shall be ignored.

1.4.5.5 Defect Terminology

Table 3 gives the descriptive terms used in classifying defects.

Dark / Spots / Lines	Spots or lines that appear dark in the display patterns and are usually the result of contamination. Defects do not vary in size or intensity (contrast) when contrast voltage is varied. Contrast variation can be achieved through the use of varying gray shade patterns.
Bright Spots / Lines	Spots or lines that appear light in the display patterns. Defects do not vary in size or intensity (contrast) when contrast voltage is varied. Contrast variation can be achieved through the use of varying gray shade patterns.
Polarizer Scratch	When the unit lights, lines appear light (white) with display patterns dark and do not vary in size. Physical damage to the polarizer that does not damage the glass
Polarizer Dent	When the unit lights, spots appear light (white) with display patterns dark and do not vary in size. Physical damage to the polarizer that does not damage the glass.
Rubbing Line	Horizontal or diagonal lines that appear gray with the display patterns dark and may have resulted from an "out of control" rubbing process on the polyimide or "waves" on the BEFs or prism sheets.
Newton Ring	The "rainbow" effect caused by non-uniform cell thickness.
M ottling	When the unit lights, variation/non-uniformity (splotchiness) appears light (white) with the display and might vary in size.
Dim Line	When the unit lights, line(s) in the monitor (vertical) or major (horizontal) axis appear dim, but not completely on or off.
Cross Lines Off	When the unit lights, lines in both the minor and major axis do not appear.
Bright/Dark Dot	A sub-pixel (R,G,B dot) stuck off / on (electrical).

1.4.5.6 Smudges, Streaks and Smears

When viewing the panel oriented so as to maximize reflected light, there shall be no visible smudging , streaking, smearing or other non-uniformity from contaminants ,fingerprints, or defects in any of the visible surfaces. This is independent of whether the unit is operating or off .
1.4.5.7 Other Defects

Undefined defects that are considered to be rejectable will be reviewed as they become apparent. These panels will be referred to the Corporate / Manufacturer Purchasing Agreement for disposition.

1.4.5.8 LCD Inspection

Put LCD panel on inspection table and illuminate the panel with a daylight fluorescent lamp located above the panel surface such that the luminance at the LCD panel is between 1000 lux and 1500 lux .Defect limits are given in Table 4.
Table 4

Average Diameter smaller of $(\mathbf{L}+\mathbf{W}) / \mathbf{2}$ or L/20+2W	Acceptable Number	Minimum Separation
$<0.1 \mathrm{~mm}$	Non countable	N / A
$0.1 \mathrm{~mm} \sim 0.3 \mathrm{~mm}$	10	15 mm
$0.31 \mathrm{~mm} \sim 0.5 \mathrm{~mm}$	10	15 mm
$0.51 \mathrm{~mm} \sim 1.25 \mathrm{~mm}$	5	15 mm
$1.26 \mathrm{~mm} \sim 2.5 \mathrm{~mm}$	3	25.4 mm
$2.51 \mathrm{~mm} \sim 3.75 \mathrm{~mm}$	3	25.4 mm
Greater than 3.75 mm	NONE	Not applicable

Note : Allowable distance between spots of two sizes is the minimum separation number for the smaller spot. Therefore, if there are two spots, 1.30 mm and 0.4 mm in diameter, they must be at least 15 mm apart.

1.5 Optical Characteristics

Depends on the LCD supplier's spec. Details refer to QA Inspection Spec.
|K4 Go to cover page

2.1 MAIN OSD MENU

a. Display OSD menu when user press "MENU" button on front bezel
b. Layout as following figure 1-1

d. The definition of size and color for main menu

Figure 1-2 color \& size definition for function Icons

The description for control function

Figure 1-3 Color \& size definition for hover at item page

Figure 14 Color \& size definition for selected status at item page
e Icons instruction

f. Item page status

Status		Display type
Non-focus	Brightness	\square
	50	
Item focused	Brightness	\square
Item selected	Brightness	\square
	50	

The description for control function

Acer eColor management
a. Display acer eColor Management OSD when user press "e" button on the front bezel or trigger this function in OSD menu/picture page.
b. Layout as following figure 1-8
c. The definition of color \& size for the acer eColor management OSD

Figure 1-9 OSD Color information for the acer eColor management d. Icons introduction

Remark: Acer logo must be appeared while "power on" or "suspend"
Scenario mode:

Mode	Contrast (OSD)	Brightness (OSD)
User mode	(User defined)	(User defined)
Text mode	50 (slope 1.0$)$	$44(61 \%)$
Standard mode	50 (slope 1.0$)$	$77(85 \%)$
Graphics mode	60 (slope 1.04$)$	$97(98 \%)$
Movie mode	56 (slope 1.025$)$	$77(85 \%)$

Note: The contrast/brightness value of modes should be adjusted by requirement.

Operation method:
Step 1: Press "e" key to initial scenario mode.
Step 2: Press ">" or "<" key to select the mode you want (not cyclic).
Step 3: If user has NO action after Step 2, OSD will disappear after 10 sec and do "auto scan" (mode keep in original one, no change).
If user press "e" key after Step 2, it means user confirm the chosen mode and monitor will do "auto scan" as well.

Figure 1-8 OSD layout for the acer eColot management

Volume management OSD
a．Display volume management OSD，when user press＂＜＂or＂＞＂ button on front bezel．
b．Layout as following figure 1－10，key operation at items page （No item selected）

（固）Vocume \square so

Figure 1－10 OSD layout for volume management

Key	Function description
Menu	
Auto	
e	Close volume OSD
input	
$<$	Volume down
$>$	Volume up

c．The definition of color \＆size for the volume management OSD and file

Figure 1－11 Color definition for volume management OSD and file

Figure 1－12 Size definition for volume management OSD
LED Light Effect in Soft－key
Power ON

Normal operation

Power turn－off

PS：power status is based on tradition design，the picture is just for reference．
Stand－by then Input Signal

Normal Operation then remove Signal

Appendix
＊Multiple language

tergeth und	$\begin{aligned} & \text { 1Engtion } \\ & \text { (0, } \end{aligned}$	2．Rumaian （207）	3．Deutseh （富童）	4．Françait （2去相）	5．Enpatiol （页葠牙研）	6．italiane （18）大相）	$\begin{aligned} & \text { 7.0uth } \\ & \text { (nexa) } \end{aligned}$	SFincish （要果解）
	Nisture	Hesoppax	sid	tmase	Imsen	Immagine	tould	Kow
19	Brichenes	Npeose	nellicer	Luminosht	Brimo	Luminosice	Helveries	kiskes
19	Contrast	Mompactecer	Kontrat	Contrate	contaste	contante	contrat	Kontrat
19	m．Position		H．Poitican	upastion	upasicom	－P．ositione	${ }^{\text {H．posise }}$	vanaupions
19	v．fotition	nonomenosept：	v．Potation	V．forition	vForicion	v．forticene	v ．portice	Arapalueti
19	Howar	－onncupoes	Foha	Netrete	niober	Nuiders	Seherstelling	Tewhenut
19	clock	पseroors	Toint	Friquence	Relef	arobese	Not	Toplun
	Colour Temp	4eerseme．	Fabbema	Temp，Coviluer	Temp．Coloer	Temp．Colore	Nkewtemp．	visiolimpobime
19	Wrem	Treosif	Wem	cheod	caide	caido	Werm	Ummin
19	cool	xamosemad	Kalt	clar	Hio	Hredo	Kool	vilus
19	Useer	nemsoome	Ansender	Uutiatera	Unuatio	Uneme	Gebsiluer	wevesp
19	Red	мpaomis	not	Rouge	Reos	nous	nood	nmainen
19	Green	зeremen	Grion	vert	verie	verese	Grean	vires
19	mot	Cumax	sau	siew	Asul	alu	Blaw	Stininen
19	Auto Confie	Astrosactraiks	Autam．Abel．	Autoritise	Avtoplunte	Autorecolatione	Astom．coetiour 35	Autom．zentiber

13	Oso Timesut	Ap. .rosp. Mexo	0s0.0wer	Delad de roso	$\begin{gathered} \text { T. de eperen } \\ \text { oso } \\ \hline \end{gathered}$	interato oso	Timeost oss	Alabistiatu
	Sating	мsect.	Eintolung	Retisen	Confleuracion	importaione	latalliog	Asetua
	Wde Mode	Wheosompere	asdormate	Moselarge	$\begin{array}{c\|} \hline \text { Modo } \\ \text { panorimiko } \end{array}$	Shermo intere	$\begin{array}{\|c\|} \hline \text { Bredtheidmod } \\ \text { in } \end{array}$	Lasjuwn
	Hall	nomase	Vellbad	Peinherran	Completa	Pieno	volodie	Tremikn
	Aspent	Amper						
19	liment	Broan	Eingos	Emitre	fintera	timat	lorens	Talo
	Lemenose	som	spreche	Lancos	Ifioms	ungus	Tome	Koill
${ }^{19}$	neest	C6pow	Necheteen	Rentraser	neinician	Reentare	Opninstallen	Nollsw
13	Neses Want	nogeosan*	stee warten	Vevilue pationter	Espere, per favar	Attenders preso	$\begin{array}{\|c\|c\|} \hline \text { Fen ogentalk } \\ \text { getould } \end{array}$	Odote
	intamation	ип¢ормиит	tho	Intermatioses	Informasion	Intermasioni	informate	Intormasto
19	Esin	Howos	saenden	Quiter	salds	Unite	Athluen	topete
19	noturn	Bosapar	zurick	Retour	volver	Niteme	Terve	Pals
19	Enter	Beon	tingore	Entrea	Intredueir	Intis	Enter	3,06s
	mono	nepeme	Sowe	Dopiz	Mover	muen	veph.	the

19	Volume	Ppeunocr	Levtrasice	Vetume	Volumen	Voteme	Volume	àsmenvolmativua
19	Ansios	Aneneroseni	Ansios	Analosioun	Analobice	Analogico	Ansloge	Analosinen
19	Digital	4и¢роsoin	Diectal	Numeique	Diectal	Diecsate	Dichas	Dietastinen
19	Mense Men:							
no limin	Auto Confle Please Wait	Aavonаетреกิะа, подождыте	acteom. Abse. Bitte warten	Autenteloge	Autozjutre Espers, por tover	Auterecolatione Attendere prege	Betig met sutomatische sonfiguratie, sen ogenblk seduld	Auteen, asetulset. Odots
notimit	Cate Not Conested	Koben we пракитонет	Leitung wicht angeschlossen	cabtenon connect		Cave non cennesse	Kabel niet aangesloten	Kaspelteiluthent
no imn	Input Not Supperted	Bxat mos กедาерwиsaeтce	Frequensen nicht unterntiotr	Frequeunces non supportes	Frequencias no seportadas	Frequenza nen suppertata	Ingang niet ondertteund	Tulos esitweto
no Imin	No Steal	Heremmas	Kein x (emal	Par de eictal	Sin metal	Asamea negate	Geen tioma	Exigastio
	on	Bm	Ein	atumb	activado	Attiva	AaN	Philut cono
	OF	Bunn	An	Ofteteinte	Apreado	Speme	un	Poinplats

Acer eColor Management OSD							
uk	Russian	Ger	Fra	Spa	Ita	Dutch	Finnish
Standard	Cramanpr	Standerd	Standard	Estandar	Standard	Standeard	Vakio
Text	Texcr	Text	Texte	Texto	Testo	Tekst	Teksti
Graphics	Ияображение	Grafiken	Images	Graficos	Grafice	Grafische	Grafilikka
Movie	Кино	Spielfilm	Film	Pelicula	Film	Film	Elokuva
User	Польsosarent	Benutrer	Utilisateur	Usuario	Utente	Gebruiker	Kaytuja
Adjust/Exit	Нестроить/8ыххоА	Abstimmen/Beenden	Ajuster/Quitter	Ajuste/salir	Regola/Esci	Aanpassen/veriaten	Sasda/ /opeta
Select	Вwi6op	Auswahl	Selectionner	Seleccionar	Seleziona	Selecteren	Valitse

3.1 Packing Exploded Diagram

3．2 Product Exploded Diagram

41		4	Yr42005950100	
40	FUBEFR FOCT FAD－2	1		
39	BASE－METAT	1	77487134201004	
38	EASE＿MAETAT＿．TWO	1		
37	ACER H23311 IIINGE	1	$7738002060 \times 0 A$	
36	22120＿BASE＿Assx	1		
35	22110 FIINOE ASSX	1		
34	22000＿STAND＿ASSX	1		
33	21370＿ERAOKLET＿FIX BASE	1		
32	21360 1－000	1		
31		1		
30	21340 DECORATION STRNT FRC 2	1		
29	21330＿IIINGE＿COVEF	1		
28	21311－FEAF OOVER＿VST	1		
27	21310 FEFA covere	1		
26	21300＿EAOK＿＿odVEre＿Assx	1		
25	FRRONT＿BEZET＿＿OTD	1		
24	FRONT＿EEZEI	1		
23	21 W	1		
22	ごミ90 DFCORATION＿STNRN FC＿z	1		
21		1		
20	21270－MVT－AR	1		
19	21260 1－060	1		
18	21250＿KEE「－ED	1		
17	21240＿T－ENNS	1		
16	21230＿¢OWEN＿K＜Ex	1		
15	21220＿FUNCTION＿KEEX	1		
14	21210 FFRONT＿OOVER	1		
13	21200＿FFONT ISEZEI ASSX	1		
12	21180＿OTHER A S	1		
11	21170＿SIIIEI＿D＿USE	1		
10	2116O＿BRACKRET＿COVER ASSX	1		
9	21150＿INVERTER＿ED＿ASSX	1		
3	21110 －USB ASSX	1		
7	21130＿INTEFRACE＿ED＿ASSX	1		
6	21120＿POWIER ED Assx	1		
5	21110 PANEI ASSX	1		
4	$21100 \ldots 011$ ASSIS＿ASSX	1		
3	21000 MONITOR IIEAD ASSY	1		
2	20000＿MECIT＿CDESIGN	1		
1	10000 ID Ass	1		
Index	Componment Description	Qty	Fart＿number	Material

4.1 Assembly procedures:

Connect the cable between power board(P802)
and interface board (P301)
Connect the cable between power board(P003) and interface board(P308)

Connect the USB board cable(P301) into interface board(P805)
Connect speak cable into interface board(P001)
Connect the FFC cable into interface board
Connect the power key cable(P601)into interface board(P309)

Use a Phillips-head screwdriver screwed the No.1~4 screws till that power board and bracket chassis base firmly attached.(No1~3 screw size=M3x6; No4 screw size=M4x8;
Torque=9~10KGFxCM).

S3 No.1~2 screws till that interface board and bracket chassis base firmly attached.
(No1~2 screw size=M3x6; Torque=9~10KGFxCM).

Fix the speaker and speaker cable, The white line in the left ,the red line in the right.

Turn the monitor faced down and put it on the bracket chassis module till both parts firmly Connect FFC cable to LCD panel. There are two locks over here when plugging in should be noticed.

Plug in parallel direction

Angel < 5 degrees

Take lamp cables out from the holes shown as the photo.

Plug 2 lamp cables to the connectors of inverter board.

Use a Hex-head screwdriver screwed the DVI and D-SUB connectors (No.1~4 Hex Nut screws Size=M3x8;Torque=4~6KGFxCM).

Take out the USB cable to through out the hole.

Use a Phillips-head screwdriver screw 4 screws
S10
(No1~4 Screw Size=M3x6;
Torque=2.5~3KGFxCM).

Use a Phillips-head screwdriver screw 3 screws (No1~2 Screw Size=M3x10;No3 screw size=M3*6 Torque=4~6KGFxCM).

Stick the safety tape

Connect OSD key cable into interface board(P306)

Use a Phillips-head screwdriver screwed the
S13 No.1~2(No1~2 screw size=M3x6; Torque=9~10 KGFxCM).
Connect the USB cable.

Use a Phillips-head screwdriver screwed the
No. 1 (No1screw size=M3x4; Torque=5+/-1 KGFxCM).

Connect the power key cable.

Connect the power key board from front bezel,
Use a Phillips-head screwdriver screwed the
No.1~2 screws(No1~2 screw size=M2x3.3;
Torque=1~1.5 KGFxCM).

Fix with the OSD key board on the front bezel

Stick the power key cable with tape.

Put a rear cover on the assembled unit and press on force mechanisms locked and firmly attached.

Use a Phillips-head screwdriver screw 1 screw (No1 Screw Size=M3x10; Torque=7.5~9.5KGFxCM).

Assemble the stand upper side to the rear cover through the way of screwing 4 screws till both units firmly attached.
(No1~4 Screw Size=M4x10; Torque=12+/KGFxCM).

Assemble the hinge cover into both two sides.

Stick a screen card on the front bezel with two

Stick POP label on the correct position the same as below photo

Take a LDPE+EPE bag to cover the LCD monitor.

Take two cushion foams; one is held the top side of LCD monitor, and another is held the bottom side.

Put accessories of stand, DVI cable, and user's manual , power cable on specific positions as photo below.

Move previous assembled parts into the carton then stick Vista and feature label on the carton then packing the carton

Open the carton with a proper tool.

Take out all accessories including D-SUB cable power cable, DVI cables, user's manual, and packing material from the carton.
(Note: It depends on whether users returning the accessories.)

Take off two cushion foams
 remove LDPE+EPE bag.

Tear off tapes to remove the screen protector card then turn over the LCD monitor (screen faced down),

Disassemble the stand cover.

Use a Phillips-head screwdriver unscrew 4 screws to release the stand base.
(No1~4 Screw Size=M4x10;
Torque $=12 \pm 1$ KGFxCM).

Use a Phillips-head screwdriver unscrew 1 screw
(No1 Screw Size=M3x10; Torque=7.5~9.5KGFxCM).

Put the dissembled monitor closed to by myself

Turn over the LCD monitor (screen faced up).

Wedge your finger between the front bezel and the panel, then pry up on the front bezel to disengage the locking mechanism.
Note: The dissemble method of front bezel is as the below photos description, although the photos from S9 to S13 are not suitable for this model.

Insert steel rule between panel and front bezel Using properly force to let the locking mechanism of front bezel and rear cover separated

Separating all of the locking mechanism of the front bezel in turn.

Hold the one upside corner of the front bezel after separating the upside of the front bezel Using properly force to pull up front bezel that will let the locking mechanism of left side, right side and down side separated.

Hold one side of down side that had been separated from front bezel
Use properly force to pull up front bezel

Use a Phillips-head screwdriver unscrewed the No.1~2 screws(No1~2 screw size=M2x3.3; Torque=1~1.5 KGFxCM).
Unhook the power key board from front bezel, disconnect the power key cable.

Tear off shield safety tape
Disconnect the OSD key cable

Use a Phillips-head screwdriver unscrewed the No.1(No1screw size=M3x4; Torque=5+/-1 KGFxCM).

Use a Phillips-head screwdriver unscrewed the No.1~2(No1~2screw size=M3x6; Torque=9~10 KGFxCM).
Unplug the USB cable and OSD key cable.

Use a Hex-head screwdriver unscrewed 4 screws to release the DVI and D-SUB connectors
(No1~4Hex Nut screws
Size=M3x8;Torque=4~6KGFxCM).

Use a Phillips-head screwdriver unscrewed the No.1~3 screws to release the power connector and HDMI connector.
(No1~2 screw size=M3x10; No 3 screw size=M3x6 Torque=4~6 KGFxCM).

Use a Phillips-head screwdriver unscrewed the
No.1~4 screws
(No1~4 screw size=M3x5; Torque=2.5~3 KGFxCM).

Disconnect the lamps cable
Take out lamp cables right through the No.1-2 square holes and separate the bracket chassis module and LCD panel apart.

Use long nose pliers to separate plastic hook

Examine the panel surface accoring to inspection criteria. Put it aside.

Use a Phillips-head screwdriver unscrewed the No.1~2 screws to release the interface board. (No1~2 screw size=M3x6; Torque=9~10KGFxCM).

Use a Phillips-head screwdriver unscrewed the No.1~4 screws to disassemble the power board. (No 1~3 screw size=M3x6; No 4 screw size=M4x8; Torque=9~10KGFxCM).

Disconnect all of the cable

5.1.No.display of screen (Screen is black, color of LED is amber)

K Go to cover page
5.2 Nothing display on screen (screen is black, color of LED is blue)

5.2 Nothing display on screen (screen is black, color of LED is blue)continued

5.3 Checking the back light unit

5.4 Abnormal screen for VGA

5.5 Abnormal screen (For DVI and the same for HDMI)

5.6 Abnormal OSM display adjust problem

14 Go to cover page
5.7 Abnormal plug and play operation for VGA

5.8 Abnormal plug and play operation (For DVI and the same for HDMI)

5.9 Checking the interface circuit of sync signal
 5.9.1 Checking the control circuit of horizontal sync pulse

5.9.2 Checking the control circuit of vertical sync pulse

5.10 Checking the resolution change IC movement

5.11 Checking the DC/DC converter circuit

6.1 Hardware Configuration

6.2 Realtek F/W Configuration:

Step-1 Launch the utility of "DebugTool_V6.2.exe"

DebugTool V6.2.exe

Step-2 Select "USB"

We Configuration v6.2	$\square \square$
Advanced Settings	
Communication $\subset \mathrm{IIC}$ $\sim \mathrm{RS} 232$ \therefore DDCCl - USB	ISP Type - RTD 2120 - RTD 2122 \checkmark Serial Flash
Configuration	
ISP	
EDID Update	

If it shows "No USB Device", there is a problems with communication .you should confirm your USB device whether be detected by your PC device management or reconnect the USB cable again.

Step-3Select ISP type: Serial Flash
Select ISP icon.

Step-4 Follow up the red square indication
Select P-flash and Auto

Step-5 Select "64K" icon to load firmware image. There are two HEX files. You only need to select "64K" to choose "H233H_EMEA.H00.hex" and "H233H_EMEA.H01.hex" will be loaded in "64~96" automatically.

Step-6Press button

The screen will show "PASS"

Check firmware version
Turn off the power, then press force on " POWER " and "E " button at the same time then press on "MENU "button to enter factory mode
Note: Please pay attention ,Don't change any parameter which is measured by precise machine before shipping out

Hardware Configuration:

1. Connect the PRINTER PLUG of DDC FIXTURE with the printer port of Desktop PC.
2. Plug USB A PLUG of DDC FIXTURE to USB socket of Desktop PC
3 Use DVI cable connect to the DVI socket of monitor of DDC FIXTURE.
4 Take a video cable then connect the D-SUB PLUG and the D-sub socket of monitor.
3. Re-confirm all the connectors are connected well.

S1 Open EDID Write protection function
Turn off the power,then press force on "POWER" and "E " button at the same time then press on "MENU "button to enter factory mode.
Select "EDID WP" to let it be off.
Note: Please pay attention,Don't change any parameter which is measured by precise machine before shipping out.

Writing EDID for VGA and DVI
S1 Chose the folder:" X233H-H233H-VGA\&DVI "
Double click " Acer_1A1D_RLT.EXE "

S2 Select Model: Key in password"cedid" then select model which one you want to write EDID code that it depends on panel type.

S3 Choose "WRITE" from menu then select "Scan S/N And Write EDID And Test DDC"

S4 Key in series number in the input column and input 2 column

Press write button after key in S/N

S5 When EDID was written successfully that will show below message on the screen

Hardware Configuration:(Writing EDID for HDMI port's)

1. Connect the PRINTER PLUG of DDC FIXTURE with the printer port of Desktop PC.
2. Plug USB A PLUG of DDC FIXTURE to USB socket of Desktop PC
3 Use DVI transfer HDMI cable connect between of the DVI EXTENDING SOCKET and Monitor(Writing EDID for HDMI port)
4 Take a video cable then connect the D-SUB PLUG and the D-sub socket of monitor.
3. Re-confirm all the connectors are connected well.

Entering Factory mole to let "EDID WP" be off Writing EDID procedure
S1 Choose the folder "X233H-H233H-HDMI" Double click " AcerHDMI_RLT"
The writing process same as writing VGA and DVI process.

S5 When EDID was written successfully that will show below message on the screen
Test OK，百回口！
MODEL ：Acer H233H
S／N ：LFSOW006843036E7430
YEAR ： 2008 WEEK ： 43

1A1H

Hardware Configuration：
1．Connect the PRINTER PLUG of DDC FIXTURE with the printer port of Desktop PC．
2．Plug USB A PLUG of DDC FIXTURE to USB socket of Desktop PC
3 Use DVI transfer HDMI cable connect between of the DVI EXTENDING SOCKET and Monitor
4 Take a video cable then connect the D－SUB PLUG and the D－sub socket of monitor．
5．Re－confirm all the connectors are connected well．

Entering Factory mole to let＂EDID WP＂be off Writing EDID procedure for 1A1H
S1 Choose the folder＂X233H－H233H－1A1H＂
Double click＂Acer＿1A1H＿RLT＂
The writing process same as writing VGA and DVI process．

$$
\text { (3) } 9
$$

S5 When EDID was written successfully that will show below message on the screen
Test OK，泉吅！
MODEL：Acer H233H
S／N ：LFSOW006843036E7430
YEAR ： 2008 WEEK ：43

